My e-Notes about DataScience, Machine Learning, Python, Data Analytics, DataStage, DWH and ETL Concepts

Breaking

Thursday, 19 May 2016

5 Tips For Better DataStage Design #13



1. The query used in the database should be in such a way that required number of rows are fetched. Do not extract the columns which are not required.

2. For parallel jobs, sequential File should not be read using same partitioning.


http://www.datagenx.net/2016/05/5-tips-for-better-datastage-design-13.html


3. For huge amount of data, use of sequential file stage is not a good practice. This stage also should not be used for intermediate storage between jobs. It degrades the performance of the job.

4. The number of lookups in a job design should be minimum. Join stage is a good alternative to lookup stage.

5. For parallel jobs, proper portioning method is to be used for better job performance and accurate flow of data.





Like the below page to get update  
https://www.facebook.com/datastage4you
https://twitter.com/datagenx
https://plus.google.com/+AtulSingh0/posts
https://datagenx.slack.com/messages/datascience/

No comments:

Post a comment

Disclaimer

The postings on this site are my own and don't necessarily represent IBM's or other companies positions, strategies or opinions. All content provided on this blog is for informational purposes and knowledge sharing only.
The owner of this blog makes no representations as to the accuracy or completeness of any information on this site or found by following any link on this site. The owner will not be liable for any errors or omissions in this information nor for the availability of this information. The owner will not be liable for any losses, injuries, or damages from the display or use of his information.