My e-Notes about DataScience, Machine Learning, Python, Data Analytics, DataStage, DWH and ETL Concepts

Breaking

Monday, 15 February 2016

5 Tips For Better DataStage Design #9



#1. Always save the metadata (for source, target or lookup definitions) in the repository to ensure re-usability and consistency.

#2. Make sure that the pathname/format details are not hard coded and job parameters are used for the same. These details are generally set as environmental variable.




#3. Ensure that all file names from external source are parameterized. This will prevent the developer from the trouble of changing the job or file name if the file name is changed. File names/Datasets created in the job for intermediate purpose can be hard coded.

#4. Ensure that the environment variable $APT_DISABLE_COMBINATION is set to ‘False’.
Ensure that $APT_STRING_PADCHAR is set to spaces.

#5. The parameters used across the jobs should be with same name. This helps to avoid unnecessary confusions

#6. Be consistent with where the slashes in the path live. Either in the design or the variableThomas McNicol




Like the below page to get update  
https://www.facebook.com/datastage4you
https://twitter.com/datagenx
https://plus.google.com/+AtulSingh0/posts
https://datagenx.slack.com/messages/datascience/

No comments:

Post a comment

Disclaimer

The postings on this site are my own and don't necessarily represent IBM's or other companies positions, strategies or opinions. All content provided on this blog is for informational purposes and knowledge sharing only.
The owner of this blog makes no representations as to the accuracy or completeness of any information on this site or found by following any link on this site. The owner will not be liable for any errors or omissions in this information nor for the availability of this information. The owner will not be liable for any losses, injuries, or damages from the display or use of his information.